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A new transformation for the Lotka–Volterra problem
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The Lotka–Volterra dynamical system (ẋ1 = ax1−bx1x2, ẋ2 = −cx2+bx1x2) is reduced
to a single second-order autonomous ordinary differential equation by means of a new
variable transformation. Formal analytic solutions are presented for this latter differential
equation.

The Lotka–Volterra (LV) problem consists of the following pair of first-order
autonomous ordinary differential equations:

ẋ1 = ax1 − bx1x2,
(1)

ẋ2 =−cx2 + bx1x2,

where x1(t) and x2(t) are real functions of time, ẋi := dxi/dt, and a, b, c are positive
real constants. This system was originally introduced by Lotka [8] in 1920 as a model
of undamped oscillations in autocatalytic chemical reactions, and was later applied by
Volterra [17] to treat predator–prey interactions in ecology. Other applications have
followed in the intervening years in physics [13], chemistry [11], population biol-
ogy [15] and epidemiology [14]. Indeed, the LV dynamical system is today a standard
textbook example in the theory of nonlinear ordinary differential equations [10,16].

Since the original publication by Lotka [8], it has been known that equations (1)
possess a dynamical invariant, namely,

Λ = bx1 + bx2 − c ln x1 − a lnx2. (2)

By means of a logarithmic transformation, Kerner [5] showed that Λ serves to re-
duce equations (1) to a Hamiltonian system. This has recently sparked a resurgence
of interest in the LV problem (including a rediscovery of some previously known
results [6,12]), particularly with regard to dynamical invariants of generalizations of
equations (1) [7,13].

Although the existence of a dynamical invariant for equations (1) implies that
this system is solvable, very little is known about the analytic form of these solutions,
with the exception of a Lie series analysis [3,4]. The purpose of the present note is
to present a new transformation that reduces the LV system to a single second-order
autonomous ordinary differential equation, and to reduce the solution of this equation
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to an integral quadrature. Thus, formal analytic solutions to equations (1) will be
presented.

We begin by defining new coordinates z1(t) and z2(t) as follows:

z1 = Λ−1/2(bx1 + bx2)1/2, z2 = Λ−1/2(−c lnx1 − a lnx2)1/2, (3)

where the positive square root is implied in each case. From equations (1)–(3) we find

x1 =
Λ

b(a+ c)

(
cz2

1 − 2z2ż2
)
, x2 =

Λ
b(a+ c)

(
az2

1 + 2z2ż2
)
, (4)

and

z2
1 + z2

2 = 1. (5)

Equation (5) permits the definition of an angle φ such that

z1 = sin φ, z2 = cos φ. (6)

From equations (2), (4) and (6), then, we find

φ̈+

[
cot φ− tanφ− 2Λ

a+ c
cosφ sin φ

]
φ̇2 + (c− a)

(
1− Λ

a+ c
sin2 φ

)
φ̇

− 1
2
ac

(
1− Λ

a+ c

)
tanφ− 1

2
acΛ
a+ c

sinφ cos φ = 0. (7)

Making the substitution

w =
Λ

2(a+ c)
(1− cos 2φ), (8)

equation (7) becomes

ẅ − ẇ2 − (c− a)(w − 1)ẇ + acw(w − 1) = 0. (9)

Moreover, from equations (4), (6) and (8) it follows that

x1 =
1
b

(cw + ẇ), x2 =
1
b

(aw − ẇ). (10)

Equation (9) is fully equivalent to the LV dynamical system (i.e., equations (1)).
A fourth-order Runge–Kutta [1] integration of equation (9) is shown in figure 1 for
a typical trajectory, and the usual phase-plane plot of equations (10) for this same
trajectory is given in figure 2. (These results are identical with those we have obtained
from a direct numerical integration of equations (1), the plots of which are not shown
for the sake of brevity.)

If we now set c = αa, equation (2) can be rearranged to yield

bx1x2 = −k
2

b
x1−α

1 eb(x1+x2)/a, k2 = −b2e−Λ/a, (11)
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Figure 1. Fourth-order Runge–Kutta solution to equation (9) of the text for a = 0.50, b = 1.30, c = 0.67.
Initial data for this trajectory are w(t = 0) = 2.00, ẇ(t = 0) = 0.50. The invariant (equation (2) of

text) is Λ = 2.5850.

Figure 2. Phase-plane plot of equations (10) of the text for the trajectory specified in figure 1.

which reduces equations (1) to

ẋ1 = ax1 +
k2

b
x1−α

1 eb(x1+x2)/a,
(12)

ẋ2 =−aαx2 −
k2

b
x1−α

1 eb(x1+x2)/a.
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Substituting equations (10) into equations (12) gives

ẅ = a2αw + a(1− α)ẇ + k2
[

1
b

(aαw + ẇ)

]1−α
e(α+1)w. (13)

Folding equation (13) into equation (9) (with c = αa) yields the following equation
for the first integral:

ẇ2 + a(α− 1)wẇ − αa2w2 − k2
[

1
b

(αaw + ẇ)

]1−α
e(α+1)w = 0. (14)

For the case c = a (α = 1), equation (14) reduces to

ẇ2 − a2w2 − k2e2w = 0, (15)

or

ẇ = ±
[
a2w2 + k2e2w]1/2

. (16)

Formal integration of equation (16) leads to the quadrature

t− t0 = ±
∫
w

[
a2w′2 + k2e2w′]−1/2

dw′. (17)

Equation (17) represents an analytic solution to the c = a LV problem. Moreover, an
analysis of the form of this integral [2] shows its relationship to the family of elliptic
integrals, and leads to a new class of LV related differential equations.

In order to provide a similar quadrature for the c 6= a case, an alternative form
of the first integral may be found by writing equations (11) as

−k
2

b
x−α1 eb(x1+x2)/a = bx2, (18)

or, using equations (10),

−k
2

b

[
1
b

(αaw + ẇ)

]−α
e(α+1)w = aw − ẇ. (19)

If we now define a function ρ(w) such that

αaw + ẇ = αaeρ, (20)

and write aw − ẇ = a(α+ 1)w − (αaw + ẇ), equation (19) becomes

−k
2

b

(
αa

b

)−α
e(α+1)we−αρ = a(α+ 1)w − αaeρ, (21)

or

ba(α+ 1)w − bαaeρ + k2
(
αa

b

)−α
e(α+1)we−αρ = 0. (22)
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Since ρ(w) can be determined from equation (22), we have from equation (20) the first
integral

ẇ = αa
(
eρ − w

)
. (23)

Formal integration of equation (23) yields the quadrature

t− t0 =

∫
w

[
αa
(
eρ − w′

)]−1
dw′. (24)

Equation (24) represents an analytic solution to the general LV problem. As in the
c = a case, an analysis of the form of equation (24) [2] shows the relationship of
this integral to the family of elliptic integrals, and leads to a new class of LV related
differential equations.

Finally, it is worth noting that we have integrated equation (13) directly using
a symbolic processor [9], and that this integration results in the same formal solution
presented above (i.e., equation (24), with ρ being given by equation (22)). Using
the same symbolic processor [9], we have also shown that equation (24) reduces to
equation (17) under the assumption α = 1 (c = a), which demonstrates the consistency
of these solutions.

In summary, we have presented a transformation for the LV dynamical system
that reduces this system to a single second-order autonomous ordinary differential
equation. We have also provided formal analytic solutions to the LV problem by
means of integral quadratures. An analytic investigation of these integrals will be
presented separately [2].
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